Brittany Belin

Dr. Belin studies the biology of rhizobia, soil bacteria with the capacity to convert nitrogen gas in the atmosphere into plant-fertilizing ammonia. Rhizobia form intimate symbioses with legumes, serving as sustainable alternatives to synthetic nitrogen fertilizers. The Belin Lab uses quantitative, cell biological approaches to understand the factors that impact symbiotic productivity in the Bradyrhizobium genus of rhizobia.

Explore Lab

Integrity of hereditary material—the genome —is critical for species survival. Genomes need protection from agents that can cause mutations affecting DNA coding, regulatory functions, and duplication during cell division. DNA sequences called transposons, or jumping genes (discovered by Carnegie’s Barbara McClintock,) can multiply and randomly jump around the genome and cause mutations.

Explore Lab
Donald Brown

The Donald Brown laboratory uses  amphibian metamorphosis to study complex developmental programs such as the development of vertebrate organs. The thyroid gland secretes thyroxine (TH), a hormone essential for the growth and development of all vertebrates including humans.

Explore Lab

In recent years, it has become obvious that animal-microbe interactions play important roles in shaping ecosystems and human health. The Cleves Lab is broadly interested in the genetic and cellular mechanisms that underlie such interactions and how these interactions are impacted by stress.

 

Explore Lab

The mouse is a traditional model organism for understanding physiological processes in humans. Chen-Ming Fan uses the mouse to study the underlying mechanisms involved in human development and genetic diseases. He concentrates on identifying and understanding the signals that direct the musculoskeletal system to develop in the mammalian embryo.

Explore Lab
Steven Farber

In mammals, most lipids, such as fatty acids and cholesterol, are absorbed into the body via the small intestine. The complexity of the cells and fluids that inhabit this organ make it very difficult to study in a laboratory setting.

Explore Lab
Joseph Gall

The first step in gene expression is the formation of an RNA copy of its DNA. This step, called transcription, takes place in the cell nucleus. Transcription requires an enzyme called RNA polymerase to catalyze the synthesis of the RNA from the DNA template. This, in addition to other processing factors, is needed before messenger RNA (mRNA) can be exported to the cytoplasm, the area surrounding the nucleus.

Explore Lab

The eukaryotic ribosome is a complex molecular machine responsible for the translation of mRNA to protein. Over the years we have gained detailed knowledge of ribosome structure, function, and biogenesis; however, a major unanswered question in the translation field is how cells monitor the integrity of the ribosome itself. Alterations in ribosome structure and function have been associated with diseases such as neurodegeneration, cancer and ribosomopathies.

Explore Lab

The Ludington Lab investigates basic ecological principles in the context of gnotobiotic Drosophila melanogaster microbiomes in order to understand the complicated and often complex relationship between microbiome and host.

Explore Lab
Allan Spradling

Allan Spradling is a Howard Hughes Medical Institute Investigator and former director of the Department of Embryology. His laboratory studies the biology of reproduction particularly egg cells, which are able to reset the normally irreversible processes of differentiation and aging that govern all somatic cells—those that turn into non-reproductive tissues.

Explore Lab
Frederick Tan

My research in yeast focuses on the fundamental question: What factors make a given molecule a “good substrate” for homologous recombination?  Such factors determine how often non-allelic repetitive DNA recombines to produce chromosomal aberrations associated with cancer and hereditary diseases.

Explore Lab

Yixian Zheng is the Director of the Department of Embryology. Yixian Zheng’s lab has a long-standing interest in cell division. In recent years, their findings have broadened their research using animal models, to include the study of stem cells, genome organization, and lineage specification—how stem cells differentiate into their final cell forms. They use a wide range of tools, including genetics in different model organisms, cell culture, biochemistry, proteomics, and genomics.

Explore Lab